Almost Every Quasinilpotent Hilbert Space Operator is a Universal Quasinilpotent
نویسندگان
چکیده
منابع مشابه
Microspectral Analysis of Quasinilpotent Operators
We develop a microspectral theory for quasinilpotent linear operators Q (i.e., those with σ(Q) = {0}) in a Banach space. When such Q is not compact, normal, or nilpotent, the classical spectral theory gives little information, and a somewhat deeper structure can be recovered from microspectral sets in C. Such sets describe, e.g., semigroup generation, resolvent properties, power boundedness as ...
متن کاملAlmost Every Domain is Universal
We endow the collection of ω-bifinite domains with the structure of a probability space, and we will show that in this space the collection of all universal domains has measure 1. For this, we present a probabilistic way to extend a finite partial order by one element. Applying this procedure iteratively, we obtain an infinite partial order. We show that, with probability 1, the cpo-completion ...
متن کاملHyperinvariant subspaces and quasinilpotent operators
For a bounded linear operator on Hilbert space we define a sequence of the so-called weakly extremal vectors. We study the properties of weakly extremal vectors and show that the orthogonality equation is valid for weakly extremal vectors. Also we show that any quasinilpotent operator $T$ has an hypernoncyclic vector, and so $T$ has a nontrivial hyperinvariant subspace.
متن کاملAlmost every graph is divergent under the biclique operator
A biclique of a graph G is a maximal induced complete bipartite subgraph of G. The biclique graph of G denoted by KB(G), is the intersection graph of all the bicliques of G. The biclique graph can be thought as an operator between the class of all graphs. The iterated biclique graph of G denoted by KBk(G), is the graph obtained by applying the biclique operator k successive times to G. The asso...
متن کاملSome Quasinilpotent Generators of the Hyperfinite Ii1 Factor
Abstract. For each sequence {cn}n in l1(N) we define an operator A in the hyperfinite II1-factor R. We prove that these operators are quasinilpotent and they generate the whole hyperfinite II1-factor. We show that they have non-trivial, closed, invariant subspaces affiliated to the von Neumann algebra and we provide enough evidence to suggest that these operators are interesting for the hyperin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1978
ISSN: 0002-9939
DOI: 10.2307/2042835